科研动态

新型微纳谷电子器件有望革新信息处理与计算
来源:品牌国际部 发布时间:2020-07-22

1595412679573956.png

(注:该图片为网站主页上链接的配图)


近日,南京大学电子科学与工程学院的王肖沐、施毅课题组同浙江大学杭州科创中心的徐杨教授带领的超视觉技术研究团队以及北京计算科学研究中心合作,研制了一种在常温下实现能谷自旋流产生、传输、探测和调控等全信息处理功能的固态量子器件。


1595414486147975.png


现代半导体器件主要依赖电荷实现对信息的表达、存储、传输和处理。在此基础上,以晶体管作为基本单元,通过控制电荷流,完成信息的处理与计算等功能。然而随着摩尔定律接近其极限,传统的晶体管器件已进入其发展瓶颈。如何利用新原理、新结构和新材料来解决和优化传统半导体器件中的尺寸微缩和能耗等问题是“后摩尔”时代半导体技术的发展重点。沿着这一思路,该研究团队提出和实现了一种“能谷自旋”晶体管新颖器件。该器件以能谷自旋自由度替代电荷作为信息编码的载体,能谷自旋器件中数据的操作和传输可以不涉及电荷流,从而有望实现低功耗的功能器件。


1595414585427043.png

图1 能谷晶体管器件的示意图。a器件由过渡金属硫族化合物二硫化钼沟道,新月形不对称金纳米天线和四个金电极组成,制作在硅/二氧化硅衬底上。插图说明了在源极和漏极处光场在二硫化钼中选择性注入不同能谷自旋流的过程,以及硅背栅对能谷自旋流的开关作用。产生的能谷自旋流通过能谷霍尔效应,被横向的霍尔电极读出,产生输出信号。b.能谷自旋流在二硫化钼中产生的具体原理。二硫化钼的六边形的布里渊区角落,具有两种不同的能谷自旋指标。新月形的等离激元纳米天线可以在空间上分离具有不同自旋角动量的光子,从而依赖不同的对准方式,在电极与硫化钼接触的肖特基结选择性地产生一种特定能谷自旋流。


1595414699869889.png

图2 能谷晶体管测试结果。a 能谷自旋晶体管的扫描霍尔电压图像。1550nm的激光作为“能谷自旋激发源”在一个典型的能谷自旋晶体管上扫描,并记录该位置的能谷霍尔输出电压。当激光位于源或漏电极时,产生相反地能谷霍尔输出信号。b 能谷霍尔输出电压随偏置电压的输出曲线。对于没有纳米天线的对照器件,无霍尔输出电压。c 能谷输出霍尔电压随硫化钼沟道电流的变化,可以看到能谷自旋流与电流无关。d 能谷晶体管的转移特性曲线。仅靠光场激发,能谷晶体管的输出电压可以通过栅压实现开关操作。由于无偏置电压,沟道电流非常小,整个器件展示出了极低的功耗。


“能谷”是指半导体材料能量-动量色散关系中的极值点,虽然人们很早意识到,能谷自旋(“能谷”的量子指标)可以像电荷或电子自旋等自由度一样表达信息,但由于能谷很难通过外场操控,目前很难利用能谷自旋制作晶体管等器件。合作团队利用不对称等离激元纳米天线中的光学手性,实现电磁场与过渡金属硫族化合物中能谷自旋的可控相互作用,并结合材料中的手性贝瑞曲率,在器件级别上实现了谷信息的产生、传输、探测和开关操作(图1)。这一能谷自旋晶体管对能谷信息的注入,传输和探测过程进行了优化和改进,使得能谷信息流得以在零偏置电压下独立于电荷流进行传输和调控(图2)。并且该器件单元有望通过类似于CMOS电路的构造方式集成形成特定逻辑功能的低功耗谷电子电路。


该项成果首次提出了一种室温工作的能谷自旋的基本单元器件,这为后摩尔时代的新型谷信息器件的发展提供了一种思路,展示了能谷信息器件应用于未来集成电路的可能。此外,该器件将光信号直接转换为谷信号的这一方式,有望应用于未来的基于谷自旋流的低功耗新型光存储和图像传感器。


2020年7月21日,该成果以“room-temperature valleytronic transistor”为题发表在《自然·纳米技术》(Nature Nanotechnology)杂志上(DOI: https://doi.org/10.1038/s41565-020-0727-0。南京大学电子科学与工程学院王肖沐教授与浙江大学信电学院/微纳电子学院徐杨教授为该论文的共同通讯作者。北京计算科学研究中心特聘研究员邵磊完成了相关的理论计算和仿真研究。南京大学物理学院缪峰课题组为该工作提供了实验材料和器件制备的技术支持。该项目还得到了南京大学电子工程学院施毅课题组和余林蔚课题组的帮助和支持,以及浙江大学科创中心杨德仁院士、吴汉明院士、俞滨教授、程志渊教授和何乐年教授的指导和支持。该项目研究得到了南京大学人工微结构科学与技术协同创新中心、浙江大学杭州国际科创中心、硅材料国家重点实验室、现代光学仪器国家重点实验室、浙大微纳加工中心的支持,以及国家重点研发计划、国家自然科学基金、中国科学院前沿科学重点研究项目、中央高校基本科研专项资金、浙江省自然科学重点基金等项目的资助。